PILES: Parallel LFES

John Bent, Garth Gibson, Gary Grider, Ben McClelland,
Paul Nowocynzki, Milo Polte, Meghan Wingate

LA-UR-08-07314, LA-UR 09-02117, LA-CC-08-104




LANL Computational Science

Lots of tightly coupled parallel simulations
Weapons design and verification
Bioscience

Astrophysics

Require large computers w/ low latency interconnects
Currently at a petaflop
Simulations always want MORE resolution

Already designing exaflop machines




Roadrunner

LANL’s petaflop supercomputer
First to petaflop! (sort of)

3060 compute nodes
Quad-core opterons with cell accelerators
Low latency infiniband for IPC
High bandwidth ethernet for data storage

5 miles and multiple tons of networking cables



Parallel Apps do Parallel 10

Large distributed systems are not free

Some component 1s always about to fail

Periodic checkpoint writes

Also visualization writes
Worites are synchronized

Tens of thousands of synchronized writes can be
difficult for the file system

Two most common write patterns
N-1 where N procs write to 1 shared file
N-N where N procs write to N non-shared files




NNHS Snidetd ¢l 110

b

i

5
2 ,LL \}/ &
H




Checkpoint Patterns
INEI
Writes and reads easy for file system

Opens can be hard

Hard for application and user

Archiving, non uniform restart, viz, etc.

N-1 Segmented

Writes and reads slightly harder for FS
Opens easier

A little easier for the application and user
Rare in practice

N-1 Strided
Worites and reads very hard
Easy for application and user
Common pattern at LANL and elsewhere



A Shared File 1s a Shared Problem

/s

20 MB/s

35 40







N-1 1s prominent
Several old LANL codes use N-1 (over 50% of cycles)

Newly written codes still choosing N-1

2 of 8 open science applications on Roadrunner
NetCDF and HDF5 formatting libraries

N-1 also prominent elsewhere
At least 10 of 23 on the PIO benchmarks page are N-1
BTIO, FLASH IO, Chombo IO, QCD, etc. (GTC?)




Obvious solution:
Convert N-N into N-1

But many applications won’t do it
Archiving, mgmt, visualization, non-uniform restart

Developers are aware of the N-1 problems
But are loathe to change to N-N
One app wrote 10K lines of code, bulkio, to try to improve N-1

If the apps won’t do it, interposition can

Desirable characteristics

Low overhead (performance and resource)
User transparency (i.e. NO CODE REWRITING)

Portable and maintainable

Our contribution: PLES




Outline

Introduction
PLFS Design and Implementation

Evaluation

Trade-ofts
Related Work
Future Work and Conclusions

Other outstanding problems in HPC




PLFS:
Parallel Log-structured FS

Virtual interposition file system using FUSE

Transparently rearranges N-1 checkpoints into N files
Very similar to Lustre Split Writing

Two main optimizations
Decouples concurrent access
Append-only writing




Decouples Logical from Physical

ZIIN




Data Reorganization in PLFS

/hostl/ /host2/

M\ M\
/data.131 /data.132 /index /data.279 /data.281 /index

“PLFS Container”




PLFS Index Record

Sort records by physical offsets
Lookup map
Sort records by timestamps

10 Trace




Other operations in PLES

Writes are much better but

Overall only improved if other ops not much much worse

Reads

by aggregating all the index files
Map logical offsets to a physical offset within a data file
Overlapping writes are undefined

Chmods, Chowns, Chgrps, Utimes, etc.

Use a container/access file

Stats
Pull permissions, ownership from access file

to get file capacity and file size




PLEFS Optimizations

Reads

When possible (1.e. O_RDONLY), construct global
index on the open, reuse for each read call

Stats
On close, create a container/metadata/host.B.L.T
B = blocks of capacity
L = last offset (i.e. file size)

T = timestamp of last write

Stat can be implemented with a readdir

Invalidate cache on subsequent re-opens




Thoroughly Evaluated

File Systems
GPFS
Lustre
Panfs

Synthetic Checkpoint Benchmarks
LANL MPI-IO test
NERSC Pattern-10

Applications and 10 Kernels
LANLI, LANL2, LANL3
Office of Science
FLASH-IO benchmark with HDF5
Chombo-1O benchmark with HDF5
QCD QIO
NASA BT-10 benchmark




N-N, PanFS #—t—i
N-1, PLFS +—dt—

3000X
at scale

”~

0
-
0
=
S’
L
e
T
-

3
T

c

0
48}

)
-
o~

[
=

1000 2000 3000 4000 5000 6000 7000 8000
Number of Processes




[LBNL PatternIO benchmark

Without
PLFS

> Unaligned

~~~

0
“~
[aa]
=
S
o
P
]
-

3
T

c

34
aa]

)]
P
B

[
=

> 64k block aligned

> Stripe aligned

With PLFS
EanFS

3 4
Size (MB)




With PLFS =——t—
Without PLFS =——

~~
0
-
48]
=
A g
L
]
T
-l
3
T
c
@
(48]

]
64 128 256 512 1024 2048

Number of Processors




 PLFS Checkpoint BW Summary !

150X

~
>
~
o
-
T
Q
Q
Q
{p]

BTIO Chombo FLASH LANL 1 LANL 2 LANL 3 QCD




With PLFS b—t—i ' With PLFS —t—i
Without PLFS F—d—i Without PLFS F—d—i

Non-uniform restart

Read Bandwidth (MB/s)
Read Bandwidth (MB/s)

Uniform restart

200 300 400 500 600 700 800

Number of Original Writers Number of Original HWriters

With PLFS t—t—i
Without PLFS F—d—i

Archiving

Read Bandwidth (MB/s)

100 200 300 400 500 600 700
Number of Original Writers




PLFS Open File =——t—
| PLFS Closed File =—#—
| PanFS Closed File ==

~~
(1))
A
Q
=
-
-
)
@
=
dp]

200 300
Number of MWriters




PLFS/FUSE Overhead

N-N, PanFS F—t—i
N-1, PLFS =i
N-1, PanFS =

~~

1)}
~
[4a)
=
o’
<
]
T
-

3
]

c

@
m

[}
u
o

[
=

= L o =i L i L i
1000 2000 3000 4000 5000 6000 7000 8000

Number of Processes




Trade-offs

Small file bandwidth due to open overhead

Single node bandwidth due to FUSE/PLEFES overhead

Small job performance due to single node bandwidth

Reads in read-write mode

Possible reduction in read BW for strange read patterns

Overlapping writes are not ordered

Shift complexity to N-N challenge




Current and Future Work

Directory striping to ameliorate N-N parallel open

Overhead graph shows

Problem for small jobs
Lots of idle CPU for large jobs . . .
Add compression to index record
Add checksums to index record
Add extensible metadata to index record




Interpostion No Extra No Extra
Technique Resources Resources
Used Used During | Used After

Library

Library

Lustre
Split Writ

Library

Maintains
Logical
Format

No/Yes

Works with
Unmodified
Applications

Data
Immediately
Available

Parallel
Filesystem
Agnostic




PLLEFS Conclusion

3000 lines of (soon to be open-source) C++
Installed on Roadrunner for Open Science

Moving onto other production machines next DST

Improves reads, does not slow down lookups

Enables easy tracing
Traces from all studied benchmarks now published

Every real app tested significantly improved up to 300X

Full paper available at




Outstanding HPC Problems

Parallel open

Resiliency

Schedulers

Scalable IO and MPI 1initialization
Silent data corruption

Programming models




